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1. INTRODUCTION

The control or power element in many hydraulic feedback control systems is the servovalve.
The servovalve varies the rate and the direction of flow of fluid to a fluid motor or an actuator by
metering the hydraulic fluid through controlled orifices.! A large number of servovalves are elec-
trohydraulic. This type is widely used because electrical devices are ideal for sensing, signal
amplification, and computation. On the other hand, the power output and the compactness of
hydraulic actuators make them ideally suited as power devices. Thus, the electrohydraulic ser-
vovalve serves as an interface as well as a power element in control systems. It converts low-power
electrical signals into motion of a valve, which in turn controls large flows or pressures to a
hydraulic actuator.?

The two-stage electrohydraulic valve (fig. 1) has wide usage and is of primary interest in this
study. The two-stage servovalve usually has a nozzle flapper valve for the first or primary stage.
The flapper valve is used with the torque motor (fig. 1) to provide a hydraulic pressure or force to
move the second- or power-stage spool. The combined torque motor-flapper valve is frequently
called a hydraulic amplifier. This type of hydraulic amplifier is well suited for use as a first stage
because it has an extremely lightweight moving element (the flapper), which requires very small
magnetic forces, thus minimizing the electrical input power required for any given response
characteristic. It has comparatively high leakage flow, but since the first stage need not be large,
its flow consumption may be held to less than 10 percent of the total flow across the power spool.

The second or power stage in the servovalve in figure 1 employs a spool or a sliding element
that moves in a direction perpendicular to the static pressure force or the flow of fluid. It meters
the flow of high-pressure fluid to the actuator. This sliding valve has relatively little leakage flow
and can be built with very high power gains. Servovalves with the torque motor-flapper nozzle
first-stage, spool valve second-stage arrangement can be built with up to 11 kW (15 hp) in ca-
pacity with inputs of as little as 10 mW into the torque motor and with outputs of up to
0.001 m®/s (20 g/m) and time constants of 3 to 5 ms. A two-stage valve of this type is practically
insensitive to accelerations and vibrations because the forces available to drive the spool are many
times greater than the weight of the spool itself. However, the “stiction” force (the force required
to break the spool loose and get it moving) is high with the sliding spool type of second stage, and it
can easily be jammed by dirt and impurities.!

The invention and the development of flueric amplifiers and flueric or fluidic control
elements that can sense, amplify, and compute make it possible to build pneumatic-hydraulic or
all-hydraulic control systems. However, the servovalve in such systems must be designed for
fluidic, rather than electrical, input signals. Pneumatic-hydraulic and all-hydraulic control
systems are of interest becausc

a. They have the potential for high-frequency response (time constants of 1 to 5 ms).

b. They may be more reliable than conventional systems since they are more rugged.®

'A. C. Morse, Llectrohydraulic Servomechanisms, McGraw-Hill Book Co., New York (1963).

*H. E. Merritt, Hydraulic Control Systems, John Wiley and Sons, Inc., New York (1967).

3R. V. Burton, Design Study—Fluidic Armament Control System (FACS), Honeywell, Inc., Minneapolis, MN,
TR-69-2440 (1989).
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Figure 1. Two-stage electrohydraulic servovalve.

¢. They will eliminate electrical-to-hydraulic, mechanical-to-hycraulic, etc., inter-
face devices for all-hydraulic systems.

d. They can be powered by the existing hydraulic transmission power supply.

e. They can possibly be produced and operated at lower cost (few moving parts and
no auxiliary power supply for electrical or mechanical components).*

At present, fluidic input servovalves have time constants of approximately 15 ms. This study
is primarily concerned with the design changes needed to obtain time constants of 1 to 5 ms for
fluidic input servovalves and to reduce leakage flow.

‘L. R. Kelly and W. H. Booth, Hydraulic Fluidics, American Socizty of Mechanical Engineers (1968).
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2. DESIGN CONSIDERATIONS

One or more of the following reasons are usually given for using fluidic elements in servovalve
design: (1) increasing reliability, (2) lowering production cost, and (3) providing for fluidic input.

There are many possible fluidic servovalve designs. One design® calls for an inverted flapper
nozzle first or input stage and a vortex valve second stage. A second design® uses a fluidic power
amplifier (of one or more stages) as a first stage to drive a second-stage spool. A third design calls
for the use of a fluidic amplifier cascade and a “jet pipe” to drive the second-stage spool.’

A fourth design calls for eliminating the torque motor from the two-stage valve (fig. 1) and at-
taching mechanical bellows to the flapper arm fig. 2). The bellows can then be driven by a fluidic
amplifier. The operations of the two-stage electrohydraulic servovalve (fig. 1) and the fluidic in-
put servovalve (fig. 2) are basically the same. They differ only in that the input torque applied to
the flapper by the torque motor induced magnetic forees in the electrohydraulic version is provid-
od by the fluidic amplifier output pressure used to alternately charge and discharge the bellows in
the fluidic version. This fourth servovalve design seems the most promising in terms of minimizing
the servovalve time constant and the leakage flow. This two-stage fluidic servovalve arrangement
was studied because of its promise and its similarity to the conventional two-stage electrohydraulic
servovalve (fig. 1), The design changes needed to minimize the servovalve time constant and the
leakage flow in this arrangement are derived in the following sections.

2.1 Derivation of Servovalve Transfer Function

This study is specifically concerned with “simple” first-stage design changes that will
minimize the servovalve time constait and the leakage flow. Attention is directed to the first stage
of the valve because simple first-stage design changes can probably be made without necessitating
redesign of other portions of the valve. Therefore, the transfer function for the fluidic input ser-
vovalve (fig. 3) is derived to determine the design parameters that can be adjusted to increase the
servovalve frequency response. Neglecting fluidic amplifier input dynamics and transport delay. a
pressure difference between the amplifier outputs and the bellows results in a Jow between the
amplifier and the bellows given by equation (1):

Pay- Pyp = (Las + Ba)Q; ()
where
Py = amplifier output pressure (Pa),

Py = bellows pressure (Pa),

*T. 8. Honda and P. §. Ralbousky. Fluidic Vortea Valvoe Servoactuator Development, General Electric Co.. Schenectady.
NY, USAAVLABS Technical Report 69-23 (May 1969).

*H. C. Kent and J. R. Sjolund., Hwdrofluidic Servoactuator Devdopment. Honewieell Inc.. Minneapolis, MN,
USAAMRD!. Technical Report 73-12 (May 1973).

'J. R. Granan, Rescurch and Devedopment on g Fluidic Servoactuator, General Eiectrie Co., Binghamton, NY,
AFFDL-TR-70-23 (July }70).
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L, = amplifier output inertance (Ns*¥ m®),

s = Laplace transform variable (1/s),
R, = amplifier output resistance (Ns/m®),
Q; = flow into bellows (m¥/s).
‘The sum of the flows into the bellows is
Qi- Qo= CsPg,
where
Q, = rgApsf, outflow caused by extension of bellows (m%s),
rg = bellows moment arm (m),

Ag = bellows cross-sectional area (m?),

6 = angular deflection of flapper or torque arm (rad),

C = fixed volume capacitance of bellows (m®/N).

Substituting equation (2) into equation (1) for both sides (fig. 3 shows a push-pull

system), noting that outflow on one side is inflow to the opposite side, gives the differential bellows
pressure:

APy(s) = AP, . 2rpAp)(Lys + Ry)sB(s) 3)
LACS" + RACS +1 LACS’ + BACS + 1

From figure 4, the fluidic input torque, T} (Nm), is equal to the restoring torque as
shown below:

T; = APg(s)(rgAp) = (Js* + K,, + 2kpr})6(s) ,

4)

where

] = polar mnoment of inertial of flapper (m-N-s*),

K,, = net torque spring rate due to torsional spring, magnetic effects, and

flow forces on flapper (m-N/rad),

kg = spring rate of bellows (N/m).
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Figure 2. Two-stage fluidic input servovalve (schematic from 1. Lee and D. N. Wormlev, Massachusetts
Institute of Technology HDL-CR-77-191-1, December 1977).
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Figure 3. Fluidic input servovalve (schematic from D. Lee and D. N. Wormley, Massachusetts Institute of
Technology HDL-CR-77-191-1, December 1977).
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Fa =Pz Ag * iy 1g0ls)

FLAPPER PIVOT

Py >Ps;

ote) i

! ; Ay AP, J

NOTE SYMHOLS ARE DEFINED ON PP 23, M

Aw = NOZZLE EXIT AREA \
INPUT TORQUE T, = APy (s)1g Ag

RESTORING TORQUE = (Js* + K, + 2kgry }6{s)

tinAy AP,
Figure 4. Torques acting on flupper,

If the flupper arm bends as shown in figure 5, the torque summation on the flapper
must include the bending term, K ra#(s), as shown below:

APy(si(rpAp) = (J& + Ko 2kpri)lO(s)] + Kora$(o (5)
where
Ky = spring constant of cantilevered flapper arm, which is assumed to be
fixed at pivot (N/rad),
rn = flapper moment arm (m),
¢(s) = single side flapper bending angle (rad).
& ? Substituting equation (3) into equation (5) gives the flapper deflection, 8(s) (rad), 4
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Figure 5. Flapper deflection and bending angle.

1
AP, (rgA
s(rés) L,Cs* + R,Cs + 1

2(rpAp)*(Las + Ry) ] .
J& + [ LG + RyGs v 1 45 * Kon + Zkorh

- Ksrpé(s)
(6)

o(s) =

However, if the flapper arm cantilever spring constant, K, is very high, then ¢(s) is negligible,
and equation (6) reduces to

1
8PA(reA8) T TR T

Jst + [.é-%;}uf-r—”“ :L::f ]s+Km+2kBr;,

12
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For hydraulic applications, C = (volume/bulk modulus) << 1 and equation (7) becomes

8(s) = APA(ME) , (8)
11 + 2(rpAp)'LpJst + [2(rgAp)*RA)s + K,, + 2kyrh

The flapper displacement, x; (rad), at the nozzles is given as
Xg = I‘NO . 9)

When the flapper is deflected from its centered position, a differential pressure, APy p (Pa), is
generated at the ends of the spool:

APLP - Kfo N (10)
where
K; = flupper nozzle pressure gain (N/m?).

The differential pressure acts against the centering springs at the ends of the spool.
Neglecting sliding friction, the spool displacement, x, (m), as a function of AP p is given as

where
A; = spool end area (m*),

K, = differential spring constant of centering springs attached to ends of spool
(N/m).

Finally, the spool displacement generates a load flow, Q, (m%s), given by
Q= Ky, (12)
where

K;p = spool flow constant (m*/s).

A block diagram description of the complete two-stage servovalve is shown in figure 6.
The spool position feedback term, ryANAP) p, is negligible so that this is esseatially an open loop
type of servovalve.! The complete valve transfer function is given as

'A. C. Morse. Electrohydraulic Servomechanisms, McGraw-Hill Book Co., New York (1963).
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Figure 6. Fluidic input sorvavalve block diagram.

ruAurNKiAKy,
Qy.(8) K,

AP, (s) ) () + 2(rpAp)Lale + [2("351;)'“.«]“ + Ky + Zkyrly’

(13)

Two-stage oloctrohydraulic servovalves are complex devices that exhibit high-order,
nonlinear response. I a first-, second-, or third-order transfer function, H{s) (m*/Ns) is selected to
represont servovalve dynamics, only an approximation to the actual response is possible. First-
order approximations result in the expression “equivalent time constant” of the servovalve, r. This

approximation assumes that the servovalve can be deseribed as a first-ordoer system given by equa-
tion (14):

Hy(s) = (14)

L
™+ 1
where

K, = servovalve gain (m*/Ns),

This approximation should correspond to the 45-deg phase point rather than the 0.7
amplitude point (-3 dB). This representation of the servovalve dynamies is good through the low-
frequency range, approximately 0 to 50 Hz.* If the low-frequency range of the fluidic input valve
is of interest, then the s* term in equation (13) can be neglected compared with the (K,,, + 2kgrh)

5 term. 'This approximation implies that the fluidic amplifier output inertance, L,, and the flapper

: polar moment of inertia, J, are negligible in this froquency range. The valve transfor function then
L becomes

*D. ]. Thayer, Trunsfer Functions for Moog Servovaloes, Rev, ed., Moog Ine., Bast Aurora, NY, Technical Bullotin 103
(1965).

14
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ABKfAsKsp
( k:“ + 2kn) Ks
"1(8) - Q,L(b) - : rB‘ \ (15)
APAL) 2Ah Rys + 1
_ — A
..E%IL + 2kn
'y
where
Iy & N
Thus, the servovalve time constant, v, is given as
2A}
T= E-— B RA ) (16)
--—-:“ + 2kB
'}
where

2AN[(Ku/rh) + 2ky] = effective capacitance of bellows.

A phase lag of 45 deg oceurs at the first-order break frequency, fy (1/s), given by

1
ont (amn

Therefore, v should be minimized to achieve favorable high-frequency response. From equation
(18), the design parameters affecting t are Ay, K,,,, ry, kg, and R,. R, is determined by the
available system flow, and K,,, is fixed by the flapper nozzle and the second-stage spool design.
Parameters Ap, ry, and ky can all be used to minimize v. Decreasing ry decroases T; however, it
decreases also the servovalve gain {AgKAK/[(K,y/rh) + 2kg]K,} from equation (15) by the
same magnitude. Increasing ky decreases 1, but it decreases also the servovalve gain by the same
magnitude. Decreasing the bellows area decreases v by the area squared, A} 1t decreases also the
servovalve gain, but to the first power, Ay. Since usually Ay < 1, then for any decrease in Ay, the
decrease is greater in v, which has the fuctor A}, than in the sorvovalve gain, which has the factor
Ap. Therefore, as a first step, the bellows area should be reduced to minimize t.

fy =

A second-order approximation to servovalve dynamics is used when response near the
90-deg phase lag point is of interest. This approximation is usually used in describing position con-
trol servomechanisms, that is, closed-loop position control systems. The 90-deg phase lag point is
best associated with the apparent natural frequency (or natural frequency), w, (1/s), of the ser-
vovalve, and the damping ratio, ¢, is best associated with the amplitude characteristic.* The
second-order approximation to servovalve dynamics has the form

*D. J. Thayer. Transfer Functions for Moog Servovalves, Rev. ed., Moog Ine.. East Aurora, NY, Technical Bulletin 103
(1965).
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where

Ky = servovalve gain (m*Ns%).

If the frequency response near the 90-deg phase lag point is of interest for the fluidic
input servovalve, then equation (13) can be rewritten to approximate the servovalve transfer func-

tion, Qy (3)/AP,(s), as

ri!ABfosKsp
Qur(8) - (Kun + 2“8‘%)’(3: (19)
AP,(s) [J + 2(rpAn)'La] 2(rpAp)'Ry ] 1 ‘
[—Knn + 2““’:& J3 ' [Kun + 2“11'13]s )

where

Kam + m‘Br;l

w) - ’
J + 2(rgAg)*Ly
r:!ABKCAsKsp
K,
Ky = —————
J + 2(rpAg)'Ly
2% _2rpAp)'Ra
w, K,, + 2kgry '

N (r8AB)*Ra
{ (Km + 2‘(8".8)[, + 2('BAB)'LA] }V’

¢
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A better second-order approximation of servovalve response reGuires that the input dynamics and
the transport delay of the fluidic amplifier be included in equation (19). A high-performance ser-
vovalve calls for the natural frequency to be as large as possib'e and the damping ratio to be in the
range 0.7 € ¢ € 1.0, From equation (19), a high natural frequency requires that the bellows area
be as small as possible and, for a given bellows area, that the amplifier output resistance be ad-
justed so that ¢ is in the desired range. Good first- or second-order servovalve dynamics call for the '
bellows area to be as small as possible. o

3
|
l
A
b
i

P i 2.2 Fluidic Amplifier Leakage Flow

The fluidic amplifier portion of the fluidic input servovalve (fig. 2) is part of the first
stage of the valve. Therefore, che fluidic amplifier leakage flow adds to the existing first-stage
leakage flow of the flapper nozzle valve. The amplifier leakage flow is the amplifier supply flow,
Q, (m¥s). The necessary supply flow is & function of the amplifier output resistance and the
desired servovalve time constant. The supply flow is derived in terms of these parameters.

PR v L P N

The amplifier supply flow cun be written as

-ﬂgA R (20)

Q‘ - nRA

ST

where

o
]

amplifier supply pressure (Pa),

>
[

amplifier power nozzle resistance (Ns/m?),

[ 3
]

constant (with values in range 0.5 € a € 0.6),

=
[ ]

constant (determined by amplifier height and number of parallel
laminates used).

From equation (8), the maximum flapper deflection, 6,,,, (rad), occurs when s = 0 and is given as

rgApAP
P = By + Togl} @

From equation (21), AP, can be written as

K
[ -F..-‘- + 2kB] l‘Bomn
APA - B .

Ag

(22)

If a first-order approximation is used to describe the servovalve dynamics, the time constant from
equation (16) is

17
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and, by using equations (22) and (23). the supply flow can be written as

9
Q, - ury6y, Ay . (34)
nr

Thus, minimizing the bellows wrea minimizes also the amplitier supply flow or the tiest-stage ser-
vovalve leakage flow,

3. TEST RESULTS

The Harry Diamond Laboratories (HDL) purchased two tluidic input servovalves with essen-
tially identical performance specifications (fig. 2). Cursory tests were conducted on one servovalve
at HDL. Since HDL does not have the tacilitios for thoroughly testing servovalves, the other one
was further developed and thoroughly tested on contract.® The additional development allowed
the servovalve to be driven by an electrical signal or a tluidic signal, The electrical signal energized
the torque motor. which in turn drove the flapper nozele valve, The tluidic signal was amolitied
by a fluidic amplifier, which drove a set of bellows, which in turn drove the flapper nozzle valve.
This servovalve had an initial set of bellows with an area smaller than normal, Ay = 319 mm®.
The test program called for replacing this set of bellows with a smaller sot, Ay = 18,1 mw®, and
then with a larger set, Afj = 44.5 mm’. This procedure was set up as a means of verifying the con-
clusions reached in the design considerations (seet. 2), The servovalve was tested with the initial set
of bellows, Ay = 319 mm®, Figure 7 shows the dynamic response of the servovalve driven by an
clectrical signal and by a fluidic signal.® The curve of phase lag versus frequency for the fluidically

driven servovalve shows 45 deg of phase lag at 20 Hz. From equation (16), the servovalve time con-
stant can be given as

T = :; tan @ = —;2:‘}‘ tan 485 =« 8 ms, (25)

D Lee and D N Wormiey, Hgdraulic Stgnal-Processing Amplificr Performance in Pasition Control Nustems,
Massachusetts Institute of Technology, Cambridge, MA. HDL-CR-T7 19021 (Devember 1977).
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3 Even though the servovalve response to fluidie input represents a significant improvement,
the response is not comparable to the response to electrical input as seen in figure 7. The added
phase shift using fluidic tnput is due to phase lag in the fluidic amplitior and the amplifier outpat

where
; 8 = 45 deg. E
i { = 20 He.
9
This servovalve response to fluidic input reprosents a signiticant improvement over previous fluidic ,
input valve responses. This improvement was accomplished by using (1) smaller bellows and (2) a A
fluidic amplifier with littlo low-frequency phase shift. The initial set of bollows, Ay, was not p
roplaced after the testing reported by Loe and Wormley,* that is, with the smaller sot of bellows,
! Ag, or the lurger set ot bellows, Ay, because the servavalve respotise with the initial set of bellows ]
& was close to the desired response and because the bellows were a cost and reliability problem. For a s
normal production run of bellows, the spring rates very 230 percont from the nominal value, To p
obtain two bellows with identical spring rates increases the cost considerably. Moreover, the i
: bellows ruptured very casily due to either overpressuving or mishandling,
§
4

o et e el e

NOTE: SYMBOLS ARE DEFINED ON PP 83, 34,
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Figure 7. Fuidic input sevovalve (fig, 2) froqueney reaponse (data from D, Lee and D N, Wormley, .
Massachusotts Lemtitute of Technology HDL-CR-77-191-1, Docember 1977),

D Lee and D. N, Wormley, HydrwuBic Signal-Proceming Amplifier Performance in Parion Controd Sysvms,
Masachuwits Institute of Tevhnology, Cambridge. MA, HDL-CR-77- 1901 (Deovmber 1977),
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resistance and bellows capacitance time constant. The phase shift observed with the fluidic input
valve due to the time constant is described by equation (15), and the added phase shift due to the
; fluidic amplifier dynamics can be described by equation (13) with the addition of the amplifier in-
v put dvnamics and transport delay. The added phase shift observed using fluidic input to the ser-
vovalve in the 20- to 120-Hz region became significant when the valve was tested® in a closed-loop
servo control system. These results indicate that servovalve response to fluidic input cannot be
meaningfully spproximated as a first-order system (sect. 2). The frequency response of the
amplifier must be considered. The results indicate also that further development is needed to make
the valve response to fluidic input comparable to valve response to electrical input, possibly by us-
ing an approach that does not require bellows. This development is crucial because, at present,
fluidic control system performance is degraded by the servovalve, and this degradation is indepen-
dent of any fluidic sensing, amplification, and signal processing errors.

Pt Seuns Pt

4. CONCLUSIONS

"This design study is concorned with two-stage fluidic input servovalves using bellows to drive
a first-stage flapper nozzle valve. The study shows that minimizing the bellows area reduces (1) the
servovalve time constant and (2) the first-stage fluidic amplifier leakage flow. A reduced fluidic in-
put servovalve time constant in the 1- to 8-ms range is desired. Experimental tests were conducted
to verify the results of the design study. These tests of a dual-input (electrical and fluidic) ser-
vovalve conducted at the Massachusetts Institute of Technology show that a time constant, v =
8 ms, was obtained by using very small bellows. The first-order approximation to a servovalve
response used in the design consideration was found to be valid up to 20 Hz or for a phase lag to 45
deg. This servovalve response to fluidic input represents a significant improvement over previous
fluidic input servovalve response. However, the response of the servovalve to fluidic input is not
comparable to the response to electrical input beyvond 20 Hz. The two servovalve responses differ
in that there is additional phase lag by using fluidic input. The sdded phase shift was due to (1) the
fluidic amplifier phase lag and (2) the amplifier output resistance and bellows capacitance time
constant. This added phase lag degraded the system performance when the servovalve was used
with fluidic input in a closed-loop servo system. The experimental results indicate that servovalve
response to fluidic input must be approximated as a second- or higher-order system when used in a
closed-loop servo system, The approximate respunse must take into account (1) the phase shift of
the fluidic amplitior and (2) the amplifior output resistance and bellows capacitance time con-
stant. The results indicate also that further development is needed to make the fluidic input valve
response comparable to the electrical input valve response.

——

*D. Lee and D N. Wormley, Hydraulic Signal-Processing Amplifier Performance in Position Control Systems,
Massuchusetts Institute of Technology, Cambridge, MA, HDL-CR-17-191-1 (December 1977).
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NOMENCLATURE

a Constant (with values in range 0.5 € a € 0.6)

Ag  Bellows cross-sectional area (m?)

A;  Spool end area (m?)

Ay Nozzle exit area (m?)

C Fixed volume capacitance of bellows (m*/N)

f Frequency (Hz)

fg  Break frequency (l/s)

H(s) Transfer function (m®Ns)

H,(s) Servovalve transfer function, first-order approximation (m®/Ns)

Hy(s) Servovalve transfer function, second-order approximation (m?®/Ns)

] Polar moment of inertia of flapper (m-N-s?)

ks Spring rate of bellows (N/m)

Net torque spring rate due to torsional spring, magnetic effects, and flow forces on flap-

per (m-N/rad)

Kt Spring)constant of cantilevered flapper arm, which is assumed to be fixed at pivot
(N/rad

K;  Flapper nozzle pressure gain (N/m?)
K, Differential spring constant of centering springs attached to ends of spool (N/m)

‘ K, Spool flow constant (m?/s)

K;  Servovalve gain, first-order approximation (m®/Ns)

K,  Servovalve gain, second-order approximation (m®/Ns®)
L, Amplifier output inertance (Ns*/m°)

n Constant (determined by amplifier height and number of parallel laminates used)
P,  Amplifier output pressure (Pa)

Pg  Bellows pressure (Pa)

Amplifier control pressure (Pa)

P p Differential pressure (Pa)

P,  Amplifier supply pressure (Pa)

Q; Flow into bellows (m¥/s)

Qi, Load flow (m%s)

Q, Flow out of bellows (m%/s)

Q, Amplifier supply flow (m%/s)

rg  Bellows moment arm (i)

ry  Flapper moment arm (m)

R,  Amplifier output resistance (Ns/m®)

R, Amplifier power nozzle resistance (Ns/m?®)

23
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NOMENCLATURE (Cont'd)

s Laplace transform variable (1/s)

Ty  Fluidic input torque (Nm)

X; Flapper displacement (m)

x,  Spool displacement (m)

y Load velocity (m/s)
, 9 Angular deflection of flapper or torque arm (rad)
: Omax Maximum flapper deflection (rad)

6(s) Flapper deflection (rad)

¢ Damping ratio

T Equivalent servovalve time constant (s)

$(s) Single side flapper bending angle (zad)

w, Appavent natural frequency or natural freguency (1/s)
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